Lord Aeck Sargent’s Science & Technology practice area strives to create environments that enhance interaction and collaboration while maintaining the highest attainable level of design, technology and safety.

Lord Aeck Sargent is an award-winning architecture and laboratory planning firm specializing in the programming and design of complex scientific research and teaching environments. We are known for responsive, creative solutions to complex projects—projects engaging an interactive approach between the owner, architect and engineers. In the past 15 years alone, the firm has completed millions of square feet of laboratory space and is nationally recognized for its leadership in the design of innovative science facilities.

We combine our design talent with advanced technology to integrate the environment with the people and equipment requirements. Each design is a specific response to the Client’s unique approach to research, philosophy and context. Our projects go far beyond the basic technical requirements; the firm’s designs become appropriate environments in which to work, as well as strong assets with which to recruit the best employees.
The Biodesign Institute at Arizona State University is designed and built to meet the most stringent demands posed by experimental research. It is flexible to allow for rapid reconfiguration of space and equipment to meet the changing needs of the scientific programs. Simultaneously, the values of communication, collaboration and connection reverberate throughout the building.

Lab, office and conference spaces surround an open, light-filled atrium encouraging interaction at every level—between buildings, floors and people with large glass walls bringing the research activities directly out for viewing. The Institute features a broad range of green design features including water-conserving site elements, a high performance building envelope, and highly-efficient engineering systems. This project was completed in collaboration with Gould Evans Associates.
The 205,000 gross square foot Sorenson Molecular Biotechnology Building is designed to support collaborative Biomedical and Neuroscience research and promote the growth of new businesses in these fields in the State of Utah. Housing 24 principal research investigators and their support staff, the facility consists of research laboratory space, supporting core facilities, offices, conference facilities, and public areas designed to encourage maximum interaction of research staff from diverse disciplines. Core research facilities in the building include Optical Imaging, Small Animal Imaging, a multi-species Vivarium and a Nanofabrication Cleanroom facility. Research spaces will accommodate future growth and change, and sustainable, resource-conserving features have been applied throughout. The siting, orientation and design of the building provide for abundant daylight environments and views of the nearby Wasatch Mountains.
MARGARET M. ALKEK BUILDING FOR BIOMEDICAL RESEARCH
Baylor College of Medicine
Houston, TX

The Alkek Building for Biomedical Research features five stories of laboratory space and a two-story, cutting-edge vivarium. The building facilitates research for a variety of interdisciplinary programs, including cardiovascular sciences, diabetes, cancer, pharmacogenomics, proteomics, and genomics and plays a major role in recruitment efforts for the College.

Design features, such as open labs and extensive use of interior glass, greatly enhance flexibility and collaboration. The design of the building recolonizes the importance of computational and dry analytical areas within interdisciplinary research and incorporates space for these activities into each laboratory module. This space is created immediately adjacent to the wet labs, separated by a glass partition, to allow researchers a high-quality work environment for their computational activities yet convenient access and visual connectivity to their laboratories.
The Genetic Medicine Building stands as a significant addition to the university’s south medical school campus and provides a primary component in the medical center’s expanding research facilities. This 340,000 SF building provides extensive state-of-the-art wet and dry lab functions, office areas, and support space for genetics, pharmacology, and a wide variety of other life-sciences based research.

The seven-story building includes two floors dedicated to animal housing and research and five floors of flexible laboratories and support spaces. Transparency throughout the facility and carefully considered circulation enhance collaboration amongst the various departments occupying the facility. A centralized atrium organizes the building’s large floor-plate, provides sky-lit space for movement between floors and promotes casual, informal interaction.
The Cyclotron Addition at the University of Michigan replaces existing production facilities for PETtrace radiochemistry (radio pharmaceuticals) which are used in both clinical and research applications. In addition to various research labs and support spaces, the facility includes a shielded cyclotron vault housing two GE, 16.5 MeV cyclotrons to create radioisotopes which are mixed in shielded hot cells, then transported pneumatically to the nearby hospital.

The sub-grade facility was developed within an exiting courtyard space and includes a rooftop garden plaza.

The essence of this renovation is the establishment of a centralized facility for the co-location of Core functions and shared-use research and equipment spaces for the Morehouse School of Medicine. Consolidation of these elements provides a significant increase in the operational efficiency of the Core and enhancements for data output and sample analysis operations.

The large laboratory provides a flexible and open space that fosters cross-pollination of ideas and sharing of resources. Direct access to natural daylight is accomplished through a glass wall, separating the laboratory and the adjacent write-up spaces. Support facilities include a centralized sterilization/glasswash suite, a variety of shared instrumentation spaces, and a large, climate-controlled equipment room for monitored research freezers and refrigerators.

The MEB 2nd Floor Lab Renovation & Research Core Consolidation at Morehouse School of Medicine, Atlanta, GA is certified LEED Silver.
The College of Dental Medicine at Georgia Regents University is designed to translate the College’s educational strategies and mission into more open and adaptable spaces for teaching, research and patient care. The project incorporates a wide array of research and practice labs to support an equally diverse range of dental associated programs. Notable features include junior, senior and faculty practice clinics, and a variety of simulation facilities. The building supports residency programs in numerous disciplines including orthodontics, pediatric dentistry, aesthetic dentistry, periodontics, AEGD/GPR, prosthodontics, oral maxillofacial surgery, and endodontics.

The location and design of the building allow for significant community engagement for treatment and to support the educational initiatives. Also included are full clinical and research support amenities, faculty offices, administrative space and a variety of both formal and informal learning areas.
The renovation of the Burnett-Womack Clinical Sciences Building is centered around creating large, open laboratories to promote interdisciplinary research, providing state-of-the-art instructional spaces for healthcare training, and upgrading the facility to current code and laboratory standards.

A key element in the renovation is a Clinical Skills Center providing 15 fully functional examination rooms in which to conduct hands-on teaching and training.

With an audio-visual monitoring room, a 30-person classroom, and a Human Patient Simulation Lab, the Center can house multiple teaching and assessment exercises simultaneously.

Improvements also include: upgrades to make the building universally accessible; enlarging existing and adding new windows to allow more access to natural light; and, a new 3,000 SF BSL-3 laboratory on the top floor.
The Vanderbilt Institute of Imaging Science (VUIIS) is a multi-disciplinary initiative charged with developing new and enhanced imaging techniques for use in biological and medical research, training and diagnostics. Essential to achieving these goals, this project consists of a 46,000 SF, five-story Imaging Center housing several large state-of-the-art magnets being used for both clinical and research applications.

The project also includes a 55,000 SF multi-species vivarium, housing four floors of animals (from rodents to non-human primates), and one floor of gross anatomy labs and offices. Each of the animal floors is focused on a specialized purpose, including a transgenic barrier and a neurosciences behavioral suite.

In addition to addressing the myriad environmental issues associated with sensitive imaging instrumentation, the project successfully integrates technology and advanced audio-visual systems into the teaching and research spaces. Also notable in the design is the seamless integration of the new building into a dense, urban campus context.
The Medical Technology Building brings student-centered, active learning laboratories and classrooms as well as informal student learning spaces previously not available at the campus. The project includes learning environments with state-of-the-art technology and equipment for orthopedic and physical therapy, radiation technology, paramedics, home care, dental hygiene, surgical tech, nursing, medical assisting, pharmacy, respiratory therapy, and phlebotomy.

In conformance with the campus master plan also prepared by LAS, the building introduces a new architectural image for the Southern Crescent Campus. With long east and west facades mandated by a need for street-front visibility, glazing quantities, geometry and shading devices help control unwanted western sun glare and heat gain.
“Thank you LAS for making this a very positive experience and for creating a wonderful new home for CSI to grow in.”

Heather Creran
President and CEO
Cytometry Specialists, Inc.
CSI offers several diagnostic testing protocols, including Histology, Flow Cytometry, Cytogenetics, and Fluorescence In-Situ Hybridization (FISH).

In 2010, as a result of growth in their client base, CSI recognized the inadequacy of their current facility, and purchased a new 60,000 SF building for retrofit. CSI hired Lord Aeck Sargent (LAS) to design and construct a new corporate headquarters, laboratory, and laboratory support building which would suit their needs for a five-year window before further expansion was required; initial build-out footprint was to be 40,000 SF. Additionally, CSI commissioned LAS to Master Plan growth beyond the initial build-out into the unimproved space.

Ameritox provides personalized lab monitoring to help physicians assess whether a patient is taking pain medication according to their prescriptions.

The new Toxicology Laboratory includes a 65,000 SF fit-out of existing shell space. Critical areas include central accessioning, screening, sample preparation, a large number of GC/LC/ MS/MS analytical stations, and the required administration and support areas.

The project was implemented on a very short time frame, with less than 6 months for design and construction, requiring a dedicated team to move the project forward. The Lord Aeck Sargent team became fully integrated with the Ameritox staff to assure that highest quality in design, fully planned process flows, and successful equipment integration were incorporated successfully.
Similar to the Main Laboratory in Decatur, also designed by Lord Aeck Sargent, the Waycross Laboratory provides testing for bacteriology, immunology, microbiology, newborn screening, parasitology, virology, biochemical terrorism preparedness and training. It serves as a growth space to accommodate the increasing demand for Public Health, accommodating biological and chemical terrorism preparedness and reaction, and acting as a backup facility for the other Georgia Public Health facilities.

Caris Life Sciences provides sophisticated services for molecular testing, tissue and blood diagnostics to the health care market.

The majority of the lab areas are open with 20% allocated to specialized rooms with unique environments for individual test requirements. The testing process begins with a central accessioning area where samples are first received, evaluated, coded and then sent on a variety of test routes. Documents and test results are accumulated along the way, with the final stop to one of the many pathologists for evaluation and distribution of results.
LabCorp offers sophisticated diagnostic medical testing across a broad spectrum of the healthcare market. The facility consolidates several previously separate operations under a single roof. The project consists of 148,500 SF of combined laboratory, administrative and support space. The majority of the first floor of an existing multi-tenant, two-story warehouse was renovated to house the clinical testing and administrative functions, while the second floor was entirely renovated for administrative functions.

Entirely new mechanical, electrical and plumbing systems were required to be installed to support the lab demands, which included a small addition and a new mechanical mezzanine.

The primary testing area was planned to optimize process flow and consists of a large open lab area with flanking support labs, support spaces and offices. The project was designed, constructed and occupied by the owner within twelve months. Due to the shortened design and construction schedule, Lord Aeck Sargent provided nearly continuous on-site services throughout the construction process.
Lord Aeck Sargent is an architecture and design firm with a 70-year history of creating environments people want to use and preserve.

With offices in Atlanta GA, Austin TX, Ann Arbor MI, Chapel Hill NC, Lexington KY and Washington DC, our firm has seven practice areas: science & technology, higher education, arts & culture, historic preservation, housing & mixed-use and urban design & planning.

We share a common mission of providing responsive design, technological expertise and exceptional service in order to provide our clients with the best possible facilities that will serve them well into the future.

We thrive in the midst of complex projects that require depth of experience and cross-discipline collaboration. Responsive design has been our guiding philosophy for seventy years, and we deliver uniquely creative responses to each project’s every detail. The result is thoughtful solutions that respond to the site, the context and the needs of its occupants.

Our portfolio includes museums, arts centers, government buildings, laboratories, corporate headquarters, education facilities and conference facilities. Our services range from master planning and programming to design, construction administration and facility management support.

Our design staff represents a broad range of experiences in design and construction. Our staff includes registered architects, urban designers, materials specialists, interior designers, land planners, cost estimators and zoning specialists.

LAS was one of the first architecture firms in the country to adopt The 2030 Challenge.

FIRM PROFILE

RESPONSIVE DESIGN

NATIONAL EXPERTISE

FIRM-WIDE EXPERIENCE

OFFICES

Atlanta
Ann Arbor
Austin
Chapel Hill
Lexington
Washington DC

140+ dedicated professionals

130+ college & university clients nationwide

50+ LEED-accredited professionals

50+ LEED-certified projects

2030

LORD AEEK SARGENT

RESPONSIVE DESIGN

140+ dedicated professionals

130+ college & university clients nationwide

50+ LEED-accredited professionals

50+ LEED-certified projects

2030